

978-1-7281-0554-3/19/$31.00 ©2019 IEEE

Person Recognition for Access Logging

Andrew Boka

Department of Electrical Engineering & Computer Science
 University of California Berkeley

Berkeley, California USA
bokaa@berkeley.edu

Brendan Morris

Department of Electrical & Computer Engineering

University of Nevada Las Vegas

Las Vegas, Nevada USA

brendan.morris@unlv.edu

 Abstract—The goal of this project is to develop a complete

hardware and software system for access monitoring into a

secured facility using modern facial recognition technology

(FRT) and lightweight, inexpensive components. FRT detects and

recognizes individuals as they enter and exit the secured area,

providing accessible logs for a visualization of this activity. The

project uses FaceNet FRT which takes a deep-learning approach

to increase facial recognition accuracy. With input from two

portable cameras, the FaceNet FRT is implemented on a

Raspberry Pi using the Intel Movidius Neural Compute system.

 Keywords—access monitoring, facial recognition technology,

deep learning, Raspberry Pi, Movidius Neural Compute Stick

I. INTRODUCTION

 Most security systems rely on access control within a

secured area. Usually this access control will manifest itself in

the form of gate guards or key card technology. Effective

implementation of these systems comes with the overhead of

complex record management as well as significant investment

in personnel or key/badge technology. An effective key card

system may also be compromised in the event that a card is

lost or stolen. However, biometric identifiers tied to a

particular individual’s physiological characteristics do not

have the same potential for misuse or exploitation [1].

 Although historically undesirable for utilization in security

or authentication systems due to high levels of inaccuracy,

recent advances in facial recognition technology (FRT) have

prompted its use in these types of applications. Some

examples include a Windows 10 login option based in FRT as

well as selfie-based authentication on smartphones and

various banking applications [1]. In addition to their use in

authentication, the potential for unique identification using

biometric identifiers has been demonstrated with companies

like Facebook and other social media platforms that are able to

organize large amounts of image data using facial recognition.

 The goal of the current project is to develop an

independent, lightweight system for access monitoring and

logging utilizing modern FRT. The envisioned system

includes a hardware/software system to monitor access at

various entry and exit points as well as provide a full visual

display of the activity. Rather than maintaining a database of

users, the system dynamically populates a new registry of

users daily. The purpose of this dynamic population of a

database is to ensure that the system may be used for general

purpose access monitoring to keep track of all individuals in a

given facility. The software is currently implemented in

hardware on a low-power processor which simulates actual

“in-door” operation while being relatively compact and

mobile for various testing applications. A web-based platform

for visualization was also developed and works alongside the

hardware system to provide real-time updates on access

information as well as the system status. The current project

expands upon an earlier lightweight prototype through its

implementation of a more modern facial recognition system.

II. PREVIOUS WORK/BACKGROUND

A. Phase 1 Prototype

 Prior to the current project, a lightweight access monitoring

system was developed by Morris [1]. The lightweight system

operated at 30 fps on a laptop or 10 fps on a Raspberry Pi

using Eigenfaces for recognition with a web-based

visualization as an overview of daily access activity (Figure

1). However, recognition accuracy was unacceptable requiring

the use of more modern deep-learning recognition techniques.

The open source project, OpenFace, was explored for

improved recognition accuracy with a deep learning approach.

Unfortunately, OpenFace required significant resources

limiting its portability.

B. Eigenfaces

 Morris’s lightweight, low-power prototype uses a facial

recognition technique known as Eigenfaces [2]. The technique

utilizes principal component analysis (PCA) to project face

images onto a feature space which spans the significant

variations among known faces.

Fig. 1. Original Facial Recognition Prototype developed by Morris [1].

 Each face image of size 128 x 128 pixels can be considered

as a point in 16384-dimensional space. Principal component

analysis (PCA) is used to determine the vectors which best

account for the distribution of face images within the image

space and these vectors are then used to define a subspace of

face images known as “face space.” These vectors are referred

to as “Eigenfaces” because these vectors are eigenvectors of

the covariance matrix corresponding to the original face

images and due to their appearance being similar to that of a

face. The face space is learned using the Caltech Faces 1999

database which is composed of 450 images of 27 different

people. Recognition is reduced to more of a verification

problem since a k-nearest neighbor search of a detected face

with all stored faces in the system is used for this process. The

biggest drawback of the Eigenfaces technique is the

underlying assumption that the faces appear in the same

frontal pose and under the same lighting conditions. This is

inadequate for use in a facial recognition system where

lighting and pose are not generally consistent factors.

Although Morris’s full-scale system using the OpenFace

implementation produced more accurate results than the

Eigenfaces software, it could not be maintained on the

lightweight, low-powered hardware.

C. FaceNet

 The FaceNet [3] system utilizes a more modern, deep

learning approach to the issue of face recognition. Given an

input image, the convolutional network is then used to learn

an embedding for the image which has properties conducive to

facial recognition, verification and clustering. As a result of

the loss function used, these embeddings have the unique

property that the Euclidean distance between them is directly

proportional to face similarity. As a result, face verification

problem is reduced to a task of thresholding a distance

between two embeddings and recognition becomes a k-nearest

neighbor (k-NN) classification problem. This method is far

more direct, efficient and practical than previous facial

recognition approaches based on deep networks.

 The deep network structure consists of a batch input and a

deep CNN which is followed by unit normalization resulting

in the facial embedding. The normalization in this procedure

ensures that the otherwise unconstrained facial embeddings

are constrained to live on the unit hypersphere which allows

for a generic embedding space to be constructed and used on

previously unseen faces. Triplet loss training directly precedes

the L2 normalization layer during training and is responsible

for the minimization of distances between the same faces and

Fig. 2.Scroff et al.’s [3] FaceNet Model structure. The network consists of a

batch input layer and a deep CNN followed by L2 normalization, which

results in the face embedding. This is followed by the triplet loss during
training.

Fig. 3. Illustration of FaceNet’s triplet-loss training procedure [4].

the maximization of distances between different faces. Triplet

loss presents faces to the deep learning algorithm in a set with

an anchor image, a positive image and a negative image. The

anchor and positive face images are both from the same

individual while the negative face image is from a different

person. This type of loss ensures that the distance between the

anchor and positive image is less than the distance between

the anchor and negative image. While previous deep learning

approaches had been developed for facial recognition, the

FaceNet implementation gives higher classification accuracy

on benchmark datasets as well as reducing error rates by up to

30 percent [3].

III. CURRENT PROJECT DESIGN/IMPLEMENTATION

 The current project was able to overcome shortcomings of

the Eigenface FRT by redesigning the lightweight, low-power

access monitoring prototype using FaceNet technology. The

structure of the model designed in the current project is shown

in Figure 3.

A. Face Detection

 The full method of facial detection used in the

implementation of the facial recognition system on the

Raspberry Pi is very similar to the OpenFace process [4].

There are 4 main steps in this process: 1. Face detection; 2.

Alignment of detected faces; 3. Use of deep neural network to

embed the face onto a 128-dimensional unit hypersphere; and

4. Performance verification, recognition or clustering tasks

using the generated embeddings.

 The system uses a Haar-feature based approach to face

detection which has proved to be very efficient and run well

on a Raspberry Pi [6]. A Haar feature considers pixel

intensities in certain regions and is considered a weak

classifier for identification. Adaboost training is used to select

the relevant Haar features and these are arranged into a strong

cascade classifier for object detection. More advanced

detection algorithms were considered and subsequently

rejected due to high computational demand.

Fig. 4. The current project’s facial recognition model structure.

Fig.5. OpenFace deep neural network implementation for face recognition [5].

B. Face Recognition

 Prior to input into the network, a detected face image must

undergo a process of pre-alignment. One of the biggest

challenges in facial recognition is learning to create a model

which is insensitive to variations in lighting and pose between

images. While previous methods were prone to error under

conditions of greater variance [2], the pre-alignment process

provides a normalization factor for these conditions. Once a

face has been detected using a Haar-feature based approach,

68 facial landmarks are mapped to the face and alignment is

performed. The alignment process uses affine image

transformations to align various facial landmarks such that

they appear in consistent relative positions across images.

 Once the image has been aligned, it is ready to be passed

through our deep neural network to generate a low-

dimensional embedding representation of the face. The neural

network used is a TensorFlow implementation of the network

described in the Schroff et al. paper [3]. The embedding is

subsequently compared against previously seen embeddings

using a k-NN classification system in addition to a threshold

distance which allows us to classify seen and unseen faces

before entry into a database.

 The prototype system runs in real time and provides output

from real time video processing which displays bounding

boxes around the detected faces and names next to these

bounding boxes as seen in figure X. In a real application, this

type of visual output would be unnecessary since the system

would be embedded in a door or other structure and the small

touch screen display would be used for the sole purpose of

providing relevant access information. The system will also

need to independently identify when a user has entered a room

rather than being prompted by user input. This will most likely

require the implementation of additional detection systems to

allow the system to determine when an entry or exit is

occurring.

 A more realistic version of the prototype system was also

developed which simply displays bounding boxes around

detected faces but does not attempt to label these faces. It is

not necessary for identification to be continuously performed

every frame on every face. It is only necessary to perform

identification in the event that an entrance or exit has been

performed. As the current k-NN classification is slow due to

the high dimensionality of the data, it is also highly

impractical to perform identifications every frame. In order to

increase accuracy of the face recognition, there is no

persistence or attempt to use correlative or other tracking

techniques on individual faces. Instead, faces are simply

detected each frame independent of previous frames.

C. FRT Access Visualization Implementation

 The final component of the access monitoring system is

data management and visualization, of which there are various

types provided. The first visualization is intended as a quick

access look at the system status - number of people that have

entered, exited and remain in the monitored area - and it is

intended to be shown on an “in-door” display which is

mounted directly onto the camera hardware.

 A more complete visualization intended as a system

management interface is built on html web technology in

order to provide cross platform accessibility. Through the use

of WebSocket technology, the “in-door” system is able to

communicate in a bidirectional manner with the html web

page. WebSockets [7] performance is a result of the protocol’s

duplex nature as well as the fact that it does not rely on HTTP

communications. Muller describes the WebSocket protocol as

“[enabling] two-way communication between a client running

untrusted code in a controlled environment to a remote host

that has opted-in to communications from that code… The

protocol consists of an opening handshake followed by basic

message framing, layered over TCP. The goal of this

technology is to provide a mechanism for browser-based

applications that need two-way communication with servers

that does not rely on opening multiple HTTP connections.”

Fig. 6. Management log interfaces are shown. The Event Log on the Left

provides a time ordered summary of everything that has occurred during the

day. The Current Occupant Log on the Right gives a summary of who is

currently in (green) and who has left (red) the system [1].

The initial HTTP connection is replaced by a WebSocket

connection which uses the same underlying Transmission

Control Protocol (TCP) which ensures the consistency of the

data while reducing the overhead traditionally associated with

HTTP requests.

 The “more complete” visualization mentioned above

provides an Event Log and Current Occupant Log which can

offer a more complete overview of all the events which have

occurred throughout the access monitoring system. The Event

Log provides all daily information including a face image,

names, time, location and type of action (entrance or exit).

The Current Occupant Log provides a face image, name and

time of action (entrance or exit) for a given location.

D. Movidius Stick Implementation

The Intel Movidius Neural Compute Stick (NCS) is a low-
power device which allows the implementation and
optimization of large deep-learning models in lightweight
applications. It is important to note that the Neural Compute
Stick does not support training these models and this task must
be done separately before deployment onto the NCS. The
power of the NCS comes from the Myriad 2 Vision Processing
Unit (VPU), which is essentially a fanless GPU running on a
USB. Currently, the device supports Tensorflow and Caffe
based deep neural networks. For this project a Tensorflow
implementation of FaceNet was deployed on the NCS. More
specifically, a pre-trained FaceNet network is first converted to
a format suitable for compilation on the NCS and then this
converted network is compiled into a .graph file to be used
with the NCS device. The NCS SDK comes with a Python API
which provides all the necessary tools for utilizing the power
of the NCS in the FRT system.

IV. EXPERIMENTAL EVALUATION

 Morris’s original prototype [1] and the current project’s

system both utilize two cameras to simulate a single point of

entry and a keyboard trigger to simulate an entry or exit. Upon

user request for simulation of an entry/exit the users detected

are given generic names with the following convention:

XXXX_YYY. The XXXX is used to indicate the identity of

the person. YYY if the occurrence count or number of times

the particular user has been seen since deployment of the

system or a daily reset of the database. As an example,

0001_010 would indicate the tenth occurrence of person 1 [1].

 The earlier FRT system faced major performance issues

due to the use of Eigenface recognition. This is a technique

which adapts poorly to variations in lighting or poses between

two face images. Additionally, its focus on face structure often

causes confusion between individuals who have similar facial

features such as a nose or beard. For the access monitoring

system, it is important to adapt to changes in lighting

conditions or pose since two separate cameras are used for

entrance and exit monitoring. The FaceNet implementation

has provided an adequate replacement for the antiquated

Eigenface model. The newer model is able to achieve around

99.6% accuracy on the popular Labeled Faces in the Wild

(LFW) [3] dataset while significantly reducing the error rate.

The commercial production of the Movidius Neural Compute

Stick (NCS) has made it possible to deploy deep neural

networks on lightweight, low-power applications through the

use of its Vision Processing Unit (VPU). This allows the full

system to run on a Raspberry Pi while achieving optimal

performance.

V. CONCLUSION

 This report details the implementation of a complete access

monitoring system utilizing facial recognition technology. The

specific contribution of this project was to replace the obsolete

Eigenface recognition used on an earlier lightweight, low-

power prototype with a much more effective deep learning

facial recognition algorithm. The prototype includes various

low-power devices including a Raspberry Pi, two cameras and

a Movidius Neural Compute Stick (NCS). Using the Vision

Processing Unit (VPU) in the NCS, it is possible to efficiently

run an implementation of the FaceNet [3] algorithm on the

lightweight prototype. In contrast to the Eigenface method

which responded poorly to changes in lighting or pose, the

deep learning approach to facial recognition is not sensitive to

this sort of variability. In order to further develop the system,

it will be necessary to remove intervention for face capture

and introduce support for multiple units in order to effectively

manage larger, more complex areas [1].

ACKNOWLEDGMENT

 The work of Andrew Boka was supported in part by the

Distributed Research Experiences for Undergraduates

(DREU) program, a joint project of the CRA Committee on

the Status of Women in Computing Research (CRA-W) and

the Coalition to Diversify Computing (CDC), which is funded

in part by the NSF Broadening Participation in Computing

program (NSF CNS-0540631).

REFERENCES

[1] Brendan Morris, “Person Recognition for Access Logging - Phase I

Report,” UNLV Department of Electrical and Computer Engineering, 2016.

[2] Matthew Turk and Alex Pentland, "Eigenfaces for Recognition," Journal

of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[3] Florian Schroff, Dmitry Kalenichenko, and James Philbin, "FaceNet: A
Unified Embedding for Face Recognition and Clustering," in Computer

Vision and Pattern Recognition, 2015, pp. 815-823.

[4] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan,

"OpenFace: A General Purpose Face Recognition," CMU School of Computer

Science, CMU-CS-16-118, 2016.

[5] Brandon Amos, “OpenFace: Free and Open Source Face Recognition with

Deep Neural Networks,” Carnegie Mellon University, 2016. [Online].

Available: // http:cmusatyalab.github.io. [Accessed: Aug. 1, 2018].

[6] Paul Viola and Michael J Jones, "Robust Real-Time Face Detection," Int.

J. Comput. Vision, vol. 57, no. 2, pp. 137-154, May 2004.

[7] Gabriel L. Muller, “HTML5 WebSocket protocol and its application to
distributed computing,” Cranfield University School of Engineering, 2014.

