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     Abstract—The goal of this project is to develop a complete 

hardware and software system for access monitoring into a 

secured facility using modern facial recognition technology 

(FRT) and lightweight, inexpensive components. FRT detects and 

recognizes individuals as they enter and exit the secured area, 

providing accessible logs for a visualization of this activity. The 

project uses FaceNet FRT which takes a deep-learning approach 

to increase facial recognition accuracy. With input from two 

portable cameras, the FaceNet FRT is implemented on a 

Raspberry Pi using the Intel Movidius Neural Compute system.  

     Keywords—access monitoring, facial recognition technology, 

deep learning, Raspberry Pi, Movidius Neural Compute Stick 

I. INTRODUCTION 

     Most security systems rely on access control within a 

secured area. Usually this access control will manifest itself in 

the form of gate guards or key card technology. Effective 

implementation of these systems comes with the overhead of 

complex record management as well as significant investment 

in personnel or key/badge technology. An effective key card 

system may also be compromised in the event that a card is 

lost or stolen. However, biometric identifiers tied to a 

particular individual’s physiological characteristics do not 

have the same potential for misuse or exploitation [1].  

     Although historically undesirable for utilization in security 

or authentication systems due to high levels of inaccuracy, 

recent advances in facial recognition technology (FRT) have 

prompted its use in these types of applications. Some 

examples include a Windows 10 login option based in FRT as 

well as selfie-based authentication on smartphones and 

various banking applications [1]. In addition to their use in 

authentication, the potential for unique identification using 

biometric identifiers has been demonstrated with companies 

like Facebook and other social media platforms that are able to 

organize large amounts of image data using facial recognition. 

     The goal of the current project is to develop an 

independent, lightweight system for access monitoring and 

logging utilizing modern FRT. The envisioned system 

includes a hardware/software system to monitor access at 

various entry and exit points as well as provide a full visual 

display of the activity. Rather than maintaining a database of 

users, the system dynamically populates a new registry of 

users daily. The purpose of this dynamic population of a 

database is to ensure that the system may be used for general 

purpose access monitoring to keep track of all individuals in a 

given facility. The software is currently implemented in 

hardware on a low-power processor which simulates actual 

“in-door” operation while being relatively compact and 

mobile for various testing applications. A web-based platform 

for visualization was also developed and works alongside the 

hardware system to provide real-time updates on access 

information as well as the system status. The current project 

expands upon an earlier lightweight prototype through its 

implementation of a more modern facial recognition system.  

II. PREVIOUS WORK/BACKGROUND 

A. Phase 1 Prototype 

     Prior to the current project, a lightweight access monitoring 

system was developed by Morris [1]. The lightweight system 

operated at 30 fps on a laptop or 10 fps on a Raspberry Pi 

using Eigenfaces for recognition with a web-based 

visualization as an overview of daily access activity (Figure 

1). However, recognition accuracy was unacceptable requiring 

the use of more modern deep-learning recognition techniques. 

The open source project, OpenFace, was explored for 

improved recognition accuracy with a deep learning approach.  

Unfortunately, OpenFace required significant resources 

limiting its portability. 

B. Eigenfaces 

     Morris’s lightweight, low-power prototype uses a facial 

recognition technique known as Eigenfaces [2]. The technique 

utilizes principal component analysis (PCA) to project face 

images onto a feature space which spans the significant 

variations among known faces.  

 

Fig. 1. Original Facial Recognition Prototype developed by Morris [1]. 

     Each face image of size 128 x 128 pixels can be considered 

as a point in 16384-dimensional space. Principal component 

analysis (PCA) is used to determine the vectors which best 

account for the distribution of face images within the image 

space and these vectors are then used to define a subspace of 



face images known as “face space.” These vectors are referred 

to as “Eigenfaces” because these vectors are eigenvectors of 

the covariance matrix corresponding to the original face 

images and due to their appearance being similar to that of a 

face. The face space is learned using the Caltech Faces 1999 

database which is composed of 450 images of 27 different 

people. Recognition is reduced to more of a verification 

problem since a k-nearest neighbor search of a detected face 

with all stored faces in the system is used for this process. The 

biggest drawback of the Eigenfaces technique is the 

underlying assumption that the faces appear in the same 

frontal pose and under the same lighting conditions. This is 

inadequate for use in a facial recognition system where 

lighting and pose are not generally consistent factors. 

Although Morris’s full-scale system using the OpenFace 

implementation produced more accurate results than the 

Eigenfaces software, it could not be maintained on the 

lightweight, low-powered hardware. 

C. FaceNet 

     The FaceNet [3] system utilizes a more modern, deep 

learning approach to the issue of face recognition. Given an 

input image, the convolutional network is then used to learn 

an embedding for the image which has properties conducive to 

facial recognition, verification and clustering. As a result of 

the loss function used, these embeddings have the unique 

property that the Euclidean distance between them is directly 

proportional to face similarity. As a result, face verification 

problem is reduced to a task of thresholding a distance 

between two embeddings and recognition becomes a k-nearest 

neighbor (k-NN) classification problem. This method is far 

more direct, efficient and practical than previous facial 

recognition approaches based on deep networks.  

     The deep network structure consists of a batch input and a 

deep CNN which is followed by unit normalization resulting 

in the facial embedding. The normalization in this procedure 

ensures that the otherwise unconstrained facial embeddings 

are constrained to live on the unit hypersphere which allows 

for a generic embedding space to be constructed and used on 

previously unseen faces. Triplet loss training directly precedes 

the L2 normalization layer during training and is responsible 

for the minimization of distances between the same faces and  

 

Fig. 2.Scroff et al.’s [3] FaceNet Model structure. The network consists of a 

batch input layer and a deep CNN followed by L2 normalization, which 

results in the face embedding. This is followed by the triplet loss during 
training.                                                                                           

 

Fig. 3. Illustration of FaceNet’s triplet-loss training procedure [4]. 

the maximization of distances between different faces. Triplet 

loss presents faces to the deep learning algorithm in a set with 

an anchor image, a positive image and a negative image. The 

anchor and positive face images are both from the same 

individual while the negative face image is from a different 

person. This type of loss ensures that the distance between the 

anchor and positive image is less than the distance between 

the anchor and negative image.  While previous deep learning 

approaches had been developed for facial recognition, the 

FaceNet implementation gives higher classification accuracy 

on benchmark datasets as well as reducing error rates by up to 

30 percent [3]. 

III. CURRENT PROJECT DESIGN/IMPLEMENTATION 

     The current project was able to overcome  shortcomings of 

the Eigenface FRT by redesigning the lightweight, low-power 

access monitoring prototype using FaceNet technology. The 

structure of the model designed in the current project is shown 

in Figure 3. 

A. Face Detection 

     The full method of facial detection used in the 

implementation of the facial recognition system on the 

Raspberry Pi is very similar to the OpenFace process [4]. 

There are 4 main steps in this process: 1. Face detection; 2. 

Alignment of detected faces; 3. Use of deep neural network to 

embed the face onto a 128-dimensional unit hypersphere; and 

4. Performance verification, recognition or clustering tasks 

using the generated embeddings. 

     The system uses a Haar-feature based approach to face 

detection which has proved to be very efficient and run well 

on a Raspberry Pi [6]. A Haar feature considers pixel 

intensities in certain regions and is considered a weak 

classifier for identification. Adaboost training is used to select 

the relevant Haar features and these are arranged into a strong 

cascade classifier for object detection. More advanced 

detection algorithms were considered and subsequently 

rejected due to high computational demand. 

 
Fig. 4. The current project’s facial recognition model structure. 



 

Fig.5. OpenFace deep neural network implementation for face recognition [5]. 

B. Face Recognition 

     Prior to input into the network, a detected face image must 

undergo a process of pre-alignment. One of the biggest 

challenges in facial recognition is learning to create a model 

which is insensitive to variations in lighting and pose between 

images. While previous methods were prone to error under 

conditions of greater variance [2], the pre-alignment process 

provides a normalization factor for these conditions. Once a 

face has been detected using a Haar-feature based approach, 

68 facial landmarks are mapped to the face and alignment is 

performed. The alignment process uses affine image 

transformations to align various facial landmarks such that 

they appear in consistent relative positions across images.  

     Once the image has been aligned, it is ready to be passed 

through our deep neural network to generate a low-

dimensional embedding representation of the face. The neural 

network used is a TensorFlow implementation of the network 

described in the Schroff et al. paper [3]. The embedding is 

subsequently compared against previously seen embeddings 

using a k-NN classification system in addition to a threshold 

distance which allows us to classify seen and unseen faces 

before entry into a database. 

     The prototype system runs in real time and provides output 

from real time video processing which displays bounding 

boxes around the detected faces and names next to these 

bounding boxes as seen in figure X. In a real application, this 

type of visual output would be unnecessary since the system 

would be embedded in a door or other structure and the small 

touch screen display would be used for the sole purpose of 

providing relevant access information. The system will also 

need to independently identify when a user has entered a room 

rather than being prompted by user input. This will most likely 

require the implementation of additional detection systems to 

allow the system to determine when an entry or exit is 

occurring. 

     A more realistic version of the prototype system was also 

developed which simply displays bounding boxes around 

detected faces but does not attempt to label these faces. It is 

not necessary for identification to be continuously performed 

every frame on every face. It is only necessary to perform 

identification in the event that an entrance or exit has been 

performed. As the current k-NN classification is slow due to 

the high dimensionality of the data, it is also highly 

impractical to perform identifications every frame. In order to 

increase accuracy of the face recognition, there is no 

persistence or attempt to use correlative or other tracking 

techniques on individual faces. Instead, faces are simply 

detected each frame independent of previous frames. 

C. FRT Access Visualization Implementation 

     The final component of the access monitoring system is 

data management and visualization, of which there are various 

types provided. The first visualization is intended as a quick 

access look at the system status - number of people that have 

entered, exited and remain in the monitored area - and it is 

intended to be shown on an “in-door” display which is 

mounted directly onto the camera hardware.  

     A more complete visualization intended as a system 

management interface is built on html web technology in 

order to provide cross platform accessibility. Through the use 

of WebSocket technology, the “in-door” system is able to 

communicate in a bidirectional manner with the html web 

page. WebSockets [7] performance is a result of the protocol’s 

duplex nature as well as the fact that it does not rely on HTTP 

communications. Muller describes the WebSocket protocol as 

“[enabling] two-way communication between a client running 

untrusted code in a controlled environment to a remote host 

that has opted-in to communications from that code… The 

protocol consists of an opening handshake followed by basic 

message framing, layered over TCP. The goal of this 

technology is to provide a mechanism for browser-based 

applications that need two-way communication with servers 

that does not rely on opening multiple HTTP connections.” 

 

Fig. 6.  Management log interfaces are shown. The Event Log on the Left 

provides a time ordered summary of everything that has occurred during the 

day. The Current Occupant Log on the Right gives a summary of who is 

currently in (green) and who has left (red) the system [1]. 



The initial HTTP connection is replaced by a WebSocket 

connection which uses the same underlying Transmission 

Control Protocol (TCP) which ensures the consistency of the 

data while reducing the overhead traditionally associated with 

HTTP requests.  

     The “more complete” visualization mentioned above 

provides an Event Log and Current Occupant Log which can 

offer a more complete overview of all the events which have 

occurred throughout the access monitoring system. The Event 

Log provides all daily information including a face image, 

names, time, location and type of action (entrance or exit). 

The Current Occupant Log provides a face image, name and 

time of action (entrance or exit) for a given location. 

D. Movidius Stick Implementation 

The Intel Movidius Neural Compute Stick (NCS) is a low-
power device which allows the implementation and 
optimization of large deep-learning models in lightweight 
applications. It is important to note that the Neural Compute 
Stick does not support training these models and this task must 
be done separately before deployment onto the NCS. The 
power of the NCS comes from the Myriad 2 Vision Processing 
Unit (VPU), which is essentially a fanless GPU running on a 
USB. Currently, the device supports Tensorflow and Caffe  
based deep neural networks. For this project a Tensorflow 
implementation of FaceNet was deployed on the NCS. More 
specifically, a pre-trained FaceNet network is first converted to 
a format suitable for compilation on the NCS and then this 
converted network is compiled into a .graph file to be used 
with the NCS device. The NCS SDK comes with a Python API 
which provides all the necessary tools for utilizing the power 
of the NCS in the FRT system. 

IV. EXPERIMENTAL EVALUATION 

     Morris’s original prototype [1] and the current project’s 

system both utilize two cameras to simulate a single point of 

entry and a keyboard trigger to simulate an entry or exit. Upon 

user request for simulation of an entry/exit the users detected 

are given generic names with the following convention: 

XXXX_YYY. The XXXX is used to indicate the identity of 

the person. YYY if the occurrence count or number of times 

the particular user has been seen since deployment of the 

system or a daily reset of the database. As an example, 

0001_010 would indicate the tenth occurrence of person 1 [1]. 

     The earlier FRT system faced major performance issues 

due to the use of Eigenface recognition. This is a technique 

which adapts poorly to variations in lighting or poses between 

two face images. Additionally, its focus on face structure often 

causes confusion between individuals who have similar facial 

features such as a nose or beard. For the access monitoring 

system, it is important to adapt to changes in lighting 

conditions or pose since two separate cameras are used for 

entrance and exit monitoring. The FaceNet implementation 

has provided an adequate replacement for the antiquated 

Eigenface model. The newer model is able to achieve around 

99.6% accuracy on the popular Labeled Faces in the Wild 

(LFW) [3] dataset while significantly reducing the error rate. 

The commercial production of the Movidius Neural Compute 

Stick (NCS) has made it possible to deploy deep neural 

networks on lightweight, low-power applications through the 

use of its Vision Processing Unit (VPU). This allows the full 

system to run on a Raspberry Pi while achieving optimal 

performance.  

V. CONCLUSION 

     This report details the implementation of a complete access 

monitoring system utilizing facial recognition technology. The 

specific contribution of this project was to replace the obsolete 

Eigenface recognition used on an earlier lightweight, low-

power prototype with a much more effective deep learning 

facial recognition algorithm. The prototype includes various 

low-power devices including a Raspberry Pi, two cameras and 

a Movidius Neural Compute Stick (NCS). Using the Vision 

Processing Unit (VPU) in the NCS, it is possible to efficiently 

run an implementation of the FaceNet [3] algorithm on the 

lightweight prototype. In contrast to the Eigenface method 

which responded poorly to changes in lighting or pose, the 

deep learning approach to facial recognition is not sensitive to 

this sort of variability. In order to further develop the system, 

it will be necessary to remove intervention for face capture 

and introduce support for multiple units in order to effectively 

manage larger, more complex areas [1]. 
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